# Synthesis and Structure of Anhydroindanone-1 Disulfide

Konstantin A. Rufanov,<sup>1</sup> Alexander S. Stepanov,<sup>2</sup> Dmitry A. Lemenovskii,<sup>2</sup> and Andrei V. Churakov<sup>3</sup>

<sup>1</sup>A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilov st., 28, 117813 Moscow, Russia

<sup>2</sup>Department of Chemistry, M.V. Lomonosov State University, Lenin Hills, 119899 Moscow, Russia

<sup>3</sup>N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prospect, 31, 117907 Moscow, Russia

Received 21 December 1998; revised 25 February 1999

ABSTRACT: An unexpectedly high yield of anhydroindanone-1 disulfide (1) was obtained by reaction of Lawesson's reagent with indanone-1. The molecular structure of 1 was established by X-ray diffraction. A possible mechanism of the reaction is discussed. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 369–371, 1999

## RESULTS AND DISCUSSION

The formation of anhydroketone disulfides in the reaction of the appropriate ketone with  $H_2S$  or  $P_4S_{10}$ was reported in 1895 by E. Baumann and E. Fromm [1]. Different thiating agents have been applied in the thione synthesis, but one of the most powerful is Lawesson's reagent (LR) [2]. Searching for a synthesis of bis-(1-indenyl)-sulfide, a potential ligand for metallocene chemistry, which could not be obtained by the  $H_2S/HCl$  reaction [3], we investigated the reaction of LR with indanone-1. It had previously been

Correspondence to: Konstantin A. Rufanov





SCHEME 1

Contract Grant Sponsor: Russian Foundation of Basic Research

Contract Grant Number: No. 94-03-08418a Contract Grant Sponsor: International Soros Science Educa-

tion Program Contract Grant Numbers: No. a678-x (K. A. R.) and a212-x (A. S. S.)

<sup>© 1999</sup> John Wiley & Sons, Inc. CCC 1042-7163/99/050369-03

| Empirical formula<br>Formula weight<br>Crystal size (mm)<br>Crystal system<br>Space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\beta$ (deg) | $\begin{array}{l} C_{27}H_{22}S_2 \\ 410.57 \\ 0.7 \times 0.8 \times 0.4 \\ \text{monoclinic} \\ P2_1/c \\ 14.419(8) \\ 12.943(4) \\ 11.767(5) \\ 106.02(4) \end{array}$ |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ν (Å <sup>3</sup> )                                                                                                                   | 2111.0(2.0)                                                                                                                                                              |
| Z                                                                                                                                     | 4                                                                                                                                                                        |
| $D_{calc}$ (g/cm <sup>3</sup> )                                                                                                       | 1.292                                                                                                                                                                    |
| F(000)                                                                                                                                | 804                                                                                                                                                                      |
| $\mu$ (CIII ·)                                                                                                                        | 2.03<br>Eprof Nopius CAD4                                                                                                                                                |
| Padiation                                                                                                                             | Mo-Ka graphite                                                                                                                                                           |
| Tradiation                                                                                                                            | monochromator                                                                                                                                                            |
| λ. Å                                                                                                                                  | 0.71069                                                                                                                                                                  |
| Temperature (K)                                                                                                                       | 293                                                                                                                                                                      |
| $\theta$ range (deg)                                                                                                                  | $2.15 < \theta < 27.96$                                                                                                                                                  |
| Scan type                                                                                                                             | ω                                                                                                                                                                        |
| Scan range                                                                                                                            | $0.8 + 0.35 \tan\theta$                                                                                                                                                  |
| Measured reflections                                                                                                                  | 2935                                                                                                                                                                     |
| Unique reflections                                                                                                                    | 2830                                                                                                                                                                     |
| R <sub>int</sub>                                                                                                                      | 0.0353                                                                                                                                                                   |
| Solution method                                                                                                                       | direct                                                                                                                                                                   |
| Refinement method                                                                                                                     | full-matrix least-squares on<br><i>F</i> <sup>2</sup>                                                                                                                    |
| Hydrogen atoms                                                                                                                        | isotropic approximation                                                                                                                                                  |
| Number of variables                                                                                                                   | 351                                                                                                                                                                      |
| Final R indices $[l > 2s(l)]$                                                                                                         | R1 = 0.0593, wR2 = 0.1450                                                                                                                                                |
| Final <i>R</i> indices (all data)                                                                                                     | R1 = 0.1034, wR2 = 0.1675                                                                                                                                                |
| Goodness-of-fit                                                                                                                       | 1.107                                                                                                                                                                    |
| Min./max. residual electron density, eÅ <sup>-3</sup>                                                                                 | -0.383/0.456                                                                                                                                                             |

 TABLE 1
 Crystal Data, Data Collection, and Refinement

 Parameters for 1
 1

The structure of 1 was refined using SHELX-93 software [5].

found that indanone-2 reacts with LR to form bis-(2indenyl)-sulfide [4]. Under the same conditions, we had obtained from indanone-1 a light-yellow crystalline solid in more than 95% yield (see Scheme 1). According to the EI mass spectrum, the product was believed to be  $(C_9H_7)_2S$ , but EA and nuclear magnetic resonance (NMR) data have shown that this was incorrect. A proposed structure for 1 could be that of Fromm's anhydroketone disulfide.

Different attempts to assign the complex spectra were unsuccessful; however, a single-crystal X-ray analysis verified our prior assumption (see Figure 1).

Additional evidence of the structure of 1 was in comparison of EI and FD mass spectra. The fragments with m/e 262 and 148 most likely result from a retro Diels-Alder transformation of the molecular ion of 1  $M^+$  (410), which could be observed only under conditions of FD ionization (see Scheme 2).



**SCHEME 2** 



SCHEME 3



**FIGURE 1** Molecular structure of **1**. Displacement ellipsoids are shown at 50% probability level.

A similar retrodiene splitting of the 1,3-dithiin ring is known and was confirmed by a PE spectroscopic investigation of the diallyl sulfide decomposition by pyrolysis [6]. A possible mechanism of the formation of 1 might include rapid interaction of bis-(1-indenyl)-sulfide with its precursor—1-thioindanone (see Scheme 3).

Our studies of sulfur-containing indenyl-type ligands and metallocenes are now in progress.

### **EXPERIMENTAL**

Toluene was purified by distillation over potassiumsodium alloy; indanone-1 and Lawesson's reagent were used as supplied (Aldrich).

*Synthesis of* **1**. To the boiled solution of indanone-1 (13.2 g, 100 mmol) in dry toluene (200 mL), Lawesson's reagent (20.5 g, 50 mmol) was slowly added. The mixture was refluxed under continuous stirring for 8 hours and then at room temperature

| S(1)-C(11)  | 1.808(4) |
|-------------|----------|
| S(1)-C(21)  | 1.838(5) |
| S(2)-C(31)  | 1.725(5) |
| S(2)-C(11)  | 1.828(4) |
| C(11)-C(15) | 1.516(6) |
| C(11)-C(12) | 1.521(7) |
| C(21)-C(32) | 1.497(7) |
| C(21)-C(25) | 1.518(7) |
| C(21)-C(22) | 1.560(7) |
| C(31)-C(32) | 1.343(6) |
| C(31)-C(35) | 1.468(6) |
| C(32)-C(33) | 1.525(7) |

TABLE 2 Selected Bond Lengths (Å) for 1

TABLE 3 Selected Bond Angles (deg) for 1

| C(11)-S(1)-C(21)  | 104.6(2) | C(31)-S(2)-C(11)  | 101.3(2) |
|-------------------|----------|-------------------|----------|
| C(15)-C(11)-C(12) | 103.5(4) | C(15)-C(11)-S(1)  | 110.3(3) |
| C(12)-C(11)-S(1)  | 116.0(3) | C(15)-C(11)-S(2)  | 104.0(3) |
| C(12)-C(11)-S(2)  | 111.2(3) | S(1)-C(11)-S(2)   | 110.9(2) |
| C(32)-C(21)-C(25) | 114.5(4) | C(32)-C(21)-C(22) | 114.2(4) |
| C(25)-C(21)-C(22) | 100.9(4) | C(32)-C(21)-S(1)  | 112.3(3) |
| C(25)-C(21)-S(1)  | 101.9(3) | C(22)-C(21)-S(1)  | 111.8(4) |
| C(32)-C(31)-C(35) | 110.1(4) | C(32)-C(31)-S(2)  | 130.9(4) |
| C(35)-C(31)-S(2)  | 119.0(4) | C(31)-C(32)-C(21) | 129.7(5) |
| C(31)-C(32)-C(33) | 110.0(4) | C(21)-C(32)-C(33) | 120.2(4) |
|                   |          |                   |          |

overnight. After that, toluene was removed under reduced pressure and the residue chromatographed (Celite, hexane/ethylacetate, 4:1) to give 1 (13.1 g, >95%), mp 205–207°C.  $C_{27}H_{22}S_2$  (410.57). Calcd: C, 78.98, H, 5.40. Found: C, 77.42; H, 5.40.

Crystallographic data (excluding structure fac-

tors) for the structure reported in this article (Table 1) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC-111961. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: int.code +44(1223)336033; E-mail: deposit@ccdc.cam.ac .uk].

Selected bond lengths and bond angles of the heterocyclic fragment of 1 are given in Tables 2 and 3, respectively.

### ACKNOWLEDGMENTS

We thank Dr. Vyacheslav A. Chertkov (Lomonosov-University of Moscow), a member of the NMR department, for his numerous attempts to determine the structure of 1 on the base of heteronuclear NMR experiments.

#### REFERENCES

- [1] Baumann E., Fromm E., Chem Ber. 1895; 28, 895.
- [2] Scheibye, S.; Shabana, R.; Lawesson, S.-O.; Rømming, C. Tetrahedron 1982, 38(7), 993.
- [3] Campaigne, E.; Moss, Rodney D. J Am Chem Soc 1954, 76, 1269.
- [4] Baierweck, P.; Simmoross, U.; Müllen, K. Chem Ber 1988, 121, 2195.
- [5] Sheldrick, G. M. SHELXL-93: Program for Refinement of Crystal Structure; University of Göttingen, Göttingen, Germany, 1993.
- [6] Bock, H.; Mohmand, S.; Hirabayashi, T.; Semkov, A. Chem Ber 1982, 115, 1139.